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Circadian rhythms : adapting to the diurnal cycle

Circadian rhythms are physiological oscillations synchronized to day/night
cycle which help organisms to anticipate daily changes in environment.
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Circadian rhythms are generated by an internal clock

Circadian rythms are known since
antiquity, however their endogeneous
character was evidenced only in 1729
by J.-J. d’'Ortous de Mairan, a french
physicist and astronomer.
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Circadian clocks are genetic oscillators

@ Bilinning (1935) Free-running period is an inherited property.
@ Konopka and Benzer (1971) Mutation of Per gene in Drosophila
induces variations in period or arrhythmia.

Circadian clocks are Core mammalian clock network
networks of interacting
genes and proteins
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Time keeping requires entrainment by an external cycle

Wheel-running activity of squirrels

A. Photoentrainment
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A network of circadian clocks

Our internal rhythms are
governed a network of
interconnected clocks in
peripheral organs which
synchronize to various signals

Via hormones,
/ neural signals

Only the master clock in the - e
brain (SCN) sees the light ~5 i ¥
directly
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The liver clock is entrained by feeding/fasting cycles

Schroder AJP-HCP 2014
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Daytime feeding changes the phase of clock gene expression in liver
but not in the master clock



Circadian rhythms of metabolis
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Fig. 3. The clock partitions behavioral and metabolic processes according to time of day. The clock coordinates ap-
propriate metabolic responses within peripheral tissues with the light/dark cycle. For example, the liver clock promotes



Clock and metabolism interact st

Obesity and Metabolic Syndrome
in Circadian Clock Mutant Mice

Fred W. Turek, Corinne Joshu,>** Akira Kohsaka ***
Emily Lin,>** Ganka Ivanova,®* Erin McDearmon, >
Aaron Laposky,? Sue Losee-Olson,® Amy Easton,?
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The CLOCK transcription factor is a key component of the molecular circadian
clock within pacemaker neurons of the hypothalamic suprachiasmatic nucleus.
We found that homozygous Clock mutant mice have a greatly attenuated
diurnal feeding rhythm, are hyperphagic and obese, and develop a metabolic
syndrome of X i ia,
and hypoinsulinernia. Expression of transcripts encoding selected hypothalamic
peptides associated with energy balance was attenuated in the Clock mutant
mice. These results suggest that the circadian clock gene network plays an
important role in mammalian energy balance.

REPORTS

running rhythm of locomotor activity in het-
erozygous mice in constant darkness (DD)
and a 3~ to 4-hour increase (ic., period =27
t 28 hours in DD) in circadian period in
homozygous mice, which is often followed
by a total breakdown of circadian thyth-
micity (i.c., arhythmicity) after a fow weeks
in DD,

Although previous stdies that used run-
ning wheel behavior as a marker of locomotor
major differences
between homozygous Clock mutant and
wild-type mice maintained on a lightdark

(LD) eycle, use of infrared beam crossing
to monitor total activity revealed a signif-
icant increase in activity during the light
phase and a change in the temporal pattern
of total activity during the dark phase (Fig.
1A) (14). In particular, wild-type mice showed
two pronounced peaks of activity—one
accurring after lights off, the other before
lights on—whereas these peaks were atten-

High-Fat Diet Disrupts
Behavioral and Molecular
Circadian Rhythms in Mice
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Inactivating the clock
leads to severe metabolic
diseases

Metabolic stress disrupts
circadian rhythms

How to describe
mathematically the
coupling of clock and
metabolism ?



High fat diet (HFD) disrupts the clock

In HFD, the feeding/fasting cycles entraining the clock are perturbed
and are associated with lower AMP levels

Hatori et al. Cell Metab 2012
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Typically, the amplitude of gene activity oscillations is dampened.



Questions

How do feeding/fasting cycles entrain the clock ?

What are the metabolic sensors (“nutrireceptors”) ?

Can we build a mathematical model of the clock with these sensors ?
Can it explain how perturbations in feeding/fasting disrupt the clock ?

Can we design a pharmacological protocol to restore normal clock
profiles ?



How can the clock sense metabolism ?

Main gauges of cellular metabolic state : NAD+/NADH, AMP/ADP/ATP
ATP is the cell fuel (e.g., muscle contraction)

Metabolic reactions consume or produce ATP (ATP + ADP « AMP)
and convert NAD+ to NADH or vice versa
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Nad+ and AMP display daily variations

1e7 AMP, Normal chow: ad lib NAD+, Normal chow: ad lib
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Note the presence of two peaks, including one at ZT5 and another
one at ZT14-ZT17



Basic network coupling the clock to metabolism

and are important metabolites characterizing the cell
metabolic state, and influence the circadian clock through
(activated by ), and (activated by )-
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Translating networks into differential equations

A gene is active when it synthesizes messenger RNA (transcription)

* The Per gene can be in
3 states, each with a
different mRNA synthesis
rate

@ bare DNA (low activity)

© BMAL1-CLOCK protein complex bound to DNA
(high activity)

© PER-CRY complex bound to BMAL1-CLOCK bound
to DNA (reduced activity)

* The fraction of time spent in each state is
determined by the chemical equilibrium of
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Mathematical model
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Expression data from mouse livers

OPEN () ACCESS Freely available online PLOS

Harmonics of Circadian Gene Transcription in Mammals

Michael E. Hughes'®, Luciano DiTacchio?®, Kevin R. Hayes’, Christopher Vollmers? S. Pulivarthy?, Julie E.

Baggs', Satchidananda Panda®*, John B. Hogenesch™ Hugues Plos Genet. 2009
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Approximation of exp. data with Fourier Series
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Mice put in DD and fed at libitum.

Even though the data are obtained in vivo, they show a very good
reproducibility from one day to the next



Adjustment of model to experimental data

Computationally intensive parameter estimation (96 kinetic constants)
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Reproducing Sirt1 and AMPK loss of function
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Mutant phenotypes are well reproduced.

Knocking down Sirt1 generally amplifies oscillations in clock gene
expression

Knocking down LKB1, hence disactivating AMPK, generally dampens
oscillations in clock gene expression



Understanding the effect of AMPK rhythms

Simulate
@ A constantly fed-like state (AMPK activity constitutively low)

@ Alternation of fasting and feeding ( oscillating AMPK activity)
(AMPK activity constitutively high)
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Model reproduces the loss of NAD+ oscillations

Loss of NAD+ oscillations as observed in a high-fat Mathematical model

diet is potentially harmful <3
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NAD+ peak essential for oxidative metabolism (Peek et al. Science 2013).

In obesity or type 2 diabetes, AMPK is systematically depressed
regardless of the regimen.

A pharmacological approach is needed to restore clock function



Pharmacological action on the clock

ARTICLE

doi:10.1038/nature11030

Regulation of circadian behaviour
and metabolism by synthetic
REV-ERB agonists

Laura A. Solt'*, Yongjun Wang'*, Subhashis Banerjee', Travis Hughes', Douglas J. Kojetin', Thomas Lundasen', Youseung Shin?,
JinLiu', Michael D. Cameron®, Romain Noel, Seung-Hee Yoo®, Joseph 8. Takahashi’, Andrew A. Butler?, Theodore M. Kamenecka®
& Thomas P. Burris™®

Drugs that can transiently modulate the activity of the core clock

protein REV-ERBa have recently become available.
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Can we restore normal clock oscillations by administering a short
REV-ERB agonist pulse at the right time ?



Rescue of clock gene oscillation amplitude

in high-fat diet using a Rev-Erb agonist
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Normal amplitude and phase are restored when the administration
time of a REV-ERB agonist (green pulse) is carefully chosen.



First experiment in vivo

Mice at Institut Pasteur de Lille were fed a high fat diet and then
administered a Rev-Erb agonist for 2 days before being sacrificed to
analyse their livers 2 hours after beginning of the night

Agoniste/Antagoniste Rev-erb A
200 l M chow diet
OHFD
180 OHFD+Ag

OHFD+AntaG
160

140 J
120 l

100

0 L1 L1 L1 L1 L1
Bmal 1 rev-erbA per 1 per 2 cry1 cry2 clock nampt sirt1 ROR Alpha

Encouraging but still much work is required to make the model more
quantitative



Conclusion

@ A mathematical model how the liver clock is entrained by
feeding/fasting cycles had been designed, incorporating the
metabolic sensors SIRT1 and AMPK.

@ It agrees well with a number of WT and mutant phenotypes

@ The mathematical model explains the daily patterns of NAD+
level.

@ Adjusting the model to normal chow and high fat diet data may
help to understand which actors are perturbed in nutritional
stress. It seems important to have a long fasting period during
the night to maintain high-amplitude rhythms

@ Goal : deliver a drug affecting a clock gene at a precise timing,
S0 as to restore normal clock rhythms.



First results published in Cell's open access journal
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Mathematical modeling to understand the interplay of

proliferation and differentiation in development

Benjamin Pfeuty, Development 142, 477 (2015).
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Biophotonics for testing cancer drug
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