Unveiling new topological phases with optical fiber networks

<u>Albert Adiyatullin</u>, Corentin Lechevalier, Rabih El Sokhen, Clement Evain, François Copie, Stéphane Randoux, Pierre Suret, Alberto Amo

In collaboration with: Lavi Upreti (Univ. Würzburg), Pierre Delplace (Univ. Lyon)

CEMPI days • 31/03/2022

- I. Introduction: topology, Floquet driving
- II. Programmable 2D photonic network
- III. Floquet winding metals

Atom: energy *levels*

Ε

Crystal: energy bands

Topological invariant

Mathematical example: number of holes

Lu et al., Nature Phot. 2014

band gap

- integer number
- can be defined for each band
- immune to perturbations

Invariant can change only if the gap closes

INSULATORS

topological charge \leftrightarrow presence of edge states

An example

Stationary Schrödinger equation $\widehat{H}\Psi = E\Psi$ Wavefunctions: $\Psi_{\pm} = \begin{pmatrix} A \\ B \end{pmatrix}$ Energies: E_{\pm} $\phi = \arg(A) - \arg(B)$ 1 topological 0.5φ 0 trivial -0.5_ -0.50.5 $^{-1}$ 0 Quasimomentum

3 µm

St-Jean et al., Nat. Phot. 2017

DBR

Mancini et al., Science 2015

rings ≈ 40 m each length difference ≈ 0.5 m

CITS RELAM Université de Lille

<u>1st turn</u>

<u>1st turn</u>

CITS RELAM Université de Lille

<u>2nd turn</u>

CITS RELAM Université de Lille

<u>2nd turn</u>

CITS RELAM Université de Lille

<u>2nd turn</u>

COLS RELAM

<u>3rd turn</u>

COLS RELAM

<u>3rd turn</u>

COLS RELAM

<u>3rd turn</u>

$$\alpha_n^{m+1} = \frac{1}{\sqrt{2}} \alpha_{n-1}^m + \frac{1}{\sqrt{2}} i \beta_{n-1}^m$$
$$\beta_n^{m+1} = \frac{1}{\sqrt{2}} i \alpha_{n+1}^m + \frac{1}{\sqrt{2}} \beta_{n+1}^m$$

Floquet-Bloch ansatz:

$$\begin{pmatrix} \alpha_n^m \\ \beta_n^m \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} e^{i\frac{kn}{2}} e^{i\frac{Em}{2}}$$

Bands:

$$E = \pm \frac{1}{2} \cos^{-1}(1 - \cos k)$$

$$\alpha_{n}^{m+1} = \frac{1}{\sqrt{2}} \alpha_{n-1}^{m} + \frac{1}{\sqrt{2}} i \beta_{n-1}^{m}$$

$$\beta_{n}^{m+1} = \frac{1}{\sqrt{2}} i \alpha_{n+1}^{m} + \frac{1}{\sqrt{2}} \beta_{n+1}^{m}$$
Light walk
Floquet-Bloch ansatz:
$$\begin{pmatrix} \alpha_{n}^{m} \\ \beta_{n}^{m} \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} e^{i \frac{kn}{2}} e^{i \frac{Em}{2}}$$
Bands:
$$1$$

$$u = 1$$
Simulations

Site

 $E = \pm \frac{1}{2} \cos^{-1}(1 - \cos k)$

Quasimomentum k

Measuring the intensity

Measuring the phase

Beating:

$$I = \left| A_{s} e^{i\varphi_{s}} e^{i\omega t} + A_{LO} e^{i(\omega + \Omega)t} \right|^{2} = A_{s}^{2} + A_{LO}^{2} + 2A_{s}A_{LO}\cos(\Omega t + \varphi_{s})$$

Measuring the phase

Lechevalier et al., Commun. Phys. 2021

 $\alpha_n^{m+1} = \cos \theta_m \, \alpha_{n-1}^m + i \sin \theta_m \, \beta_{n-1}^m$ $\beta_n^{m+1} = i \sin \theta_m \, \alpha_{n+1}^m + \cos \theta_m \, \beta_{n+1}^m$ e.g. $\theta_m = \pi/4$ means $\sin \theta_m = \cos \theta_m = \frac{1}{\sqrt{2}}$ as for 50:50 beamsplitter

We use 2-step driving: θ_1 on odd steps, θ_2 on even steps

 $\alpha_n^{m+1} = \cos \theta_m \, \alpha_{n-1}^m + i \sin \theta_m \, \beta_{n-1}^m$ $\beta_n^{m+1} = i \sin \theta_m \, \alpha_{n+1}^m + \cos \theta_m \, \beta_{n+1}^m$ e.g. $\theta_m = \pi/4$ means $\sin \theta_m = \cos \theta_m = \frac{1}{\sqrt{2}}$ as for 50:50 beamsplitter

We use 2-step driving: θ_1 on odd steps, θ_2 on even steps

$$\theta_1 = \theta_2 = \pi/4$$
 touching bands

 $\theta_1 = \pi/4$ gap opening $\theta_2 = \pi/4 - 0.4$

Expanding to 2D: phase

 $\alpha_n^{m+1} = (\cos \theta_m \, \alpha_{n-1}^m + i \sin \theta_m \, \beta_{n-1}^m) e^{i\varphi_m}$ $\beta_n^{m+1} = i \sin \theta_m \, \alpha_{n+1}^m + \cos \theta_m \, \beta_{n+1}^m$

Again, 2 steps: $\varphi_1 = c_1 \varphi$ and $\varphi_2 = c_2 \varphi$ c_1 and c_2 are integers $\varphi \in [-\pi, \pi]$ as a new dimension

Floquet winding metal

see Upreti et al., Phys. Rev. Lett. 2020

π

0

k

 $\phi = -\pi$

Band tomography

Band tomography

K is a topological invariant:

$$\nu = \frac{1}{2\pi i} \int_0^{2\pi} d\varphi \operatorname{Tr} \left[U_F^{-1} \frac{\partial U_F}{\partial \varphi} \right] = \sum_{j=\pm} \frac{1}{2\pi} \int_0^{2\pi} d\varphi \frac{\partial E_j}{\partial \varphi} = 2K$$

Topological Bloch sub-oscillaitons

Upreti et al., Phys. Rev. Lett. 2020

Topological Bloch sub-oscillaitons

Group velocity:

$$v_g^{\pm}(k,\varphi) = \frac{\partial E_{\pm}(k,\varphi)}{\partial k} = \pm \frac{\cos\theta_1 \cos\theta_2 \sin\left(k + K\varphi\right)}{\sqrt{1 - \left[\cos\theta_1 \cos\theta_2 \cos\left(k + K\varphi\right) - \sin\theta_1 \sin\theta_2 \cos\left(\Delta\varphi\right)\right]^2}}$$

Frequency of sub-oscillations is topologically protected

Topological Bloch sub-oscillaitons

Amplitude of sub-oscillations can change!

Group velocity:

 $\pm \frac{\cos \theta_1 \cos \theta_2 \sin \left(k + K\varphi\right)}{\sqrt{1 - \left[\cos \theta_1 \cos \theta_2 \cos \left(k + K\varphi\right) - \sin \theta_1 \sin \theta_2 \cos \left(\Delta\varphi\right)\right]^2}}$

Two topological invariants coexist!

Next steps: Chern number, Berry curvature

Universal photonic simulator for studying topological effects

Lechevalier et al., Commun. Phys. 2021

Realization of a Floquet winding metal

Upreti et al., Phys. Rev. Lett. 2020 Adiyatullin et al., arXiv:2203:01056

Coexistence of two topological invariants

Measuring the invariants

Next steps

Expanding to higher dimensions

Chalabi et al., Phys. Rev. Lett. 123, 150503 (2019)

Interactions due to fiber nonlinearities

by C. Lechevalier

2D lattice of polariton resonators

O. Jamadi et al., Light Sci. Appl. 9, 144 (2020)